viernes, 21 de febrero de 2014

CICLO CARDIACO

CICLO CARDIACO
El ciclo cardíaco se refiere al patrón repetitivo de contracción y relajación del corazón. La fase de contracción se llama sístole, y la de relajación, diástole.


La contracción auricular ocurre hacia el final de la diástole, cuando los ventrículos están relajados; cuando los ventrículos se contraen durante la sístole, las aurículas están relajadas. Así, el corazón tiene una acción de bombeo de dos pasos. Las aurículas derecha e izquierda se contraen de manera casi simultánea, lo cual va seguido por la contracción de los ventrículos derecho e izquierdo 0.1 a 0.2 segundos más tarde.


Durante el tiempo en que tanto las aurículas como los ventrículos están relajados, el retorno venoso de sangre llena las aurículas. La acumulación de presión que sobreviene hace que las válvulas AV se abran y que la sangre fluya desde las aurículas hacia los ventrículos.

miércoles, 19 de febrero de 2014

CORAZON

CORAZON

El corazón es el órgano principal del aparato circulatorio en todos losanimales que poseen un sistema circulatorio (incluyendo todos losvertebrados).1 En el ser humano es un músculo hueco y piramidal situado en la cavidad toracica. Funciona como una bomba aspirante e impelente, impulsando la sangre a todo el cuerpo.

Excitación cardíaca

El músculo cardíaco es biogénico ( se excita así mismo). Esto, a diferencia, por ejemplo, del músculo esquelético que necesita de un estímulo consciente o reflejo.
Las contracciones rítmicas del corazón se producen espontáneamente, pero su frecuencia puede ser afectada por las influencias nerviosas u hormonales, por el ejercicio físico o por la percepción de un peligro.
File:Gray501.png

x

viernes, 14 de febrero de 2014

CASCADA DE LA COAGULACION

CASCADA DE LA COAGULACION

Cuando ocurre la lesión de un vaso sanguíneo, se activan diversos mecanismos fisiológicos que promueven la hemostasia, o el fin del sangrado. La lesión del vaso sanguíneo inicia tres mecanismos hemostáticos separados que son:
1.- Vasoconstricción.
2.- Formación de un tapón plaquetario.
3.- Producción de una red de proteínas fibrina que penetran el tapón plaquetario y lo rodean.
Cuando no existe daño en los vasos sanguíneos, las plaquetas se repelen entre sí, y del endotelio de los vasos sanguíneos. El endotelio es un epitelio escamoso simple que está sobre colágeno de tejido conjuntivo y otras proteínas que son capaces de activar plaquetas para empezar la formación del coágulo.
Cuando un vaso sanguíneo es lesionado y se rompe el endotelio, las glucoproteínas en la membrana plasmática de las plaquetas en ese momento son capaces de unirse a las fibras de colágeno expuestas.
Como sabemos, la fuerza del flujo sanguíneo es tan fuerte que podría llegar a desprender las plaquetas del colágeno, de no ser por una proteína que es producida por las células endoteliales conocida como Factor de Von Willebrand, que se une tanto al colágeno como a las plaquetas.
El ADP y el Tromboxano A2 que son liberados a partir de las plaquetas activadas se encargan de reclutar nuevas plaquetas hacia la vecindad, y las hacen "pegajosas", de tal manera que se adhieren a las que están pegadas sobre el colágeno. A su vez, la segunda capa de plaquetas pasa por una reacción de liberación plaquetaria, y el ADP y el tromboxano A2 que se secretan hacen que se agreguen más plaquetas en el sitio de la lesión. Esto produce un tapón plaquetario en el vaso lesionado.
El tapón plaquetario se fortalece mediante una red de fibras de proteína insolubles comofibrina. De modo que los coágulos de sangre contienen plaquetas y fibrina, y por lo general contienen eritrocitos atrapados que imparten al coágulo un color rojo.
La conversión de fibrinógeno en fibrina puede ocurrir mediante una de dos vías. La sangre que se deja en un tubo de ensayo se coagulará sin la adicción de sustancia química externa alguna; así, la vía que produce este coágulo se lama la vía intrínseca. Existen algunos tejidos dañados que liberan una sustancia química que inicia un "atajo" para la formación de fibrina. Dado que esta sustancia química no forma parte de la sangre, la vía más corta se llama la vía extrínseca.

martes, 11 de febrero de 2014

MOLECULAS AUNTICUAGULANTES

Coagulación implica toda una serie de reacciones enzimáticas encadenadas de tal forma que actúan como un alud o avalancha, amplificándose en cada paso: un par de moléculas iniciadoras activan un número algo mayor de otras moléculas, las que a su vez activan un número aún mayor de otras moléculas, etc.
En esta serie de reacciones intervienen más de 12 proteínas, iones de Ca2+ y algunos fosfolípidos de membranas celulares.
A cada uno de estos compuestos participantes en la cascada de coagulación se les denomina "Factor" y comúnmente se lo designa por un número romano elegido de acuerdo al orden en que fueron descubiertos.
Siete de los factores de coagulación (preacelerina —factor V—, protrombina —Factor II—, proconvertina —factor VII—, factor antihemofílico beta —IX—, factor Stuart —X—, tromboplastina plasmática —XI— y factor Hageman —XII—) son zimógenos sintetizados en el hígado, esto es, proenzimas que normalmente no tienen una actividad catalítica importante, pero que pueden convertirse en enzimas activas cuando se hidrolizan determinadas uniones peptídicas de sus moléculas. Anticoagulantes:
La coagulación de la sangre en tubos de ensayo se puede prevenir mediante la adición de citrato de sodio o de ácido etilendiaminotetraacético (EDTA), los cuales producen quelación del calcio. Por este medio, las concentraciones de Ca en la sangre que pueden participar en la secuencia de coagulación se disminuyen, y se inhibe la coagulación. Una mucoproteína llamada heparina también puede añadirse al tubo para prevenir la coagulación. La heparina activa la antitrombina III, una proteína plasmática que se combina con trombina y la desactiva.
Los fármacos cumarina (warfarina y dicumarol) bloquean la activación celular de la vitamina K al inhibir la enzima vitamina K epóxido reductasa. Dado que la vitamina K activada se requiere para la coagulación adecuada de la sangre, estos fármacos sirven como anticoagulantes.
La vitamina K se necesita para la conversión de glutamato, un aminoácido que se encuentra en muchas de las proteínas factores de la coagulación, hacia un derivado llamado gamma-carboxiglutamato. Este derivado es más eficaz que el glutamato para unirse al Ca, y esa unión se necesita para la función adecuada de los factores de la coagulación II, VII, IX y X. Debido a la acción indirecta de la vitamina K sobre la coagulación de la sangre, la cumarina debe administrarse a un paciente durante varios días antes de que se haga eficaz como anticoagulante.


lunes, 10 de febrero de 2014

ELEMENTOS DE LA SANGRE

ELEMENTOS DE LA SANGRE

Los elementos formes —también llamados elementos figurados—: son elementos semisólidos (es decir, mitad líquidos y mitad sólidos) y particulados (corpúsculos) representados por células y componentes derivados de células.
El plasma sanguíneo: un fluido traslúcido y amarillento que representa la matriz extracelular líquida en la que están suspendidos los elementos formes.

Los elementos formes constituyen alrededor del 45% de la sangre. Tal magnitud porcentual se conoce con el nombre de hematocrito(fracción "celular"), adscribible casi en totalidad a la masa eritrocitaria. El otro 55% está representado por el plasma sanguíneo (fracción acelular).

Los elementos formes de la sangre son variados en tamaño, estructura y función, y se agrupan en:
Las células sanguíneas, que son los glóbulos blancos o leucocitos, células que "están de paso" por la sangre para cumplir su función en otros tejidos;
Los derivados celulares, que no son células estrictamente sino fragmentos celulares; están representados por los eritrocitos y las plaquetas; son los únicos componentes sanguíneos que cumplen sus funciones estrictamente dentro del espacio vas

HEMATOPOYESIS

HEMATOPOYESIS

La hematopoyesis o hemopoyesis es el proceso de formación, desarrollo y maduración de los elementos formes de la sangre (eritrocitos, leucocitos y plaquetas) a partir de un precursor celular común e indiferenciado conocido como célula madre hematopoyética pluripotencial, unidad formadora de clones, hemocitoblasto o stem cell.

Las células madre que en el adulto se encuentran en la médula ósea son las responsables de formar todas las células y derivados celulares que circulan por la sangre.

Las células sanguíneas son degradadas por el bazo y los macrófagos del hígado. Este último, también elimina las proteínas y otras sustancias de la sangre.


domingo, 9 de febrero de 2014

HORMONA TIROIDEA


HORMONA TIROIDE

Las tironinas actúan en casi todas las células del cuerpo. Ellas actúan para incrementar el metabolismo basal, afectan a la biosintesis proteica, ayudan a regular el crecimiento de los huesos largos (sinergia con la hormona del crecimiento) y maduración neuronal, e incrementan la sensibilidad del cuerpo a las catecolaminas (tales como la adrenalina) a través de la permisidad. Las hormonas tiroideas son esenciales para el desarrollo y diferenciación adecuada de todas las células del cuerpo humano. Estas hormonas también regulan el metabolismo de proteinas, grasas, y carbohidrtaos, afectando a cómo las células humanas usan los compuestos energéttico